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Lecture 11                      2012/12/10 
 
Outline 
 
1. Motivation 
2. Hartman-Grobman Theorem 
3. Center Manifold Theorems  
4. Summary 
 
1. Motivation  

 
•  The Hartman-Grobman theorem is another very important result in the local 

qualitative theory of ODE. The theorem shows that ( )x f x′ =  with (0) 0f =  

and its linearized system (0)x Df x′ =  have the same qualitative structures 

near a hyperbolic equilibrium. 
•  The center manifold theorem is a natural extension of the stable manifold 

theorem, but it has an important difference. The proof is much complicated. 
This is an advanced topic in both qualitative analysis and stability theory.  

 
2. Hartman-Grobman Theorem 
 
1) Equivalence  
 
    Consider  

( )x f x′ = ,                        (11.1) 

where 0x =  is a hyperbolic equilibrium. The linearized system  

                          x Ax′ = ,                          (11.2) 

where (0)A D f= .  

 
Definition 11.1 Let A  and B  be subsets of nR . A homemorphism A  onto B  

is a continuous one-to-one map of A  onto B , :H A B→ , such that 

1 :H B A− →  is continuous. The two sets A  and B  are called homemorphic or 

topologically equivalent if there is a homemorphism from A  onto B . 
 
Remark 11.1 Notice the difference between isomorphism and homemorphism. The 
latter has the requirement of H  having a continuous property.   
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Definition 11.2 Two dynamic systems such as (11.1) and (11.2) are said to be 
topologically equivalent in a neighborhood of the origin if there is a homemorphism 
H , mapping an open set U  containing the origin onto an open set V  containing 
the origin, which maps trajectories of (11.1) in U  onto trajectories of (11.2) in V  
and preserves the orientation. If the homemorphism H  preserves parameterization 
by time t , then (11.1) and (11.2) are said topologically conjugate in the 
neighborhood of the origin.  
 
Remark 11.2 Notice the difference between topologically equivalence and 
topologically conjugate.  
 
2) An Illustrative Example for the Topologically Conjugate 
 

Example 11.1 Consider two linear systems x Ax′ =  and x Bx′ =  with  

1 3
3 1

A
− − 

=  − − 
 and 

2 0
0 4

B  
=  − 

.  

Let ( )H x R x= , where  

1 11
1 12

R
− 

=  
 

 and 1 1 11
1 12

R −  
=  − 

. 

Then 1B R A R −=  and letting ( )y H x R x= =  or 1x R y−=  gives  

1y R A R y B y−= = .  

Thus, if 0( ) Atx t e x=  is the solution of x Ax′ =  through 0x , then  

0 0( ) ( ( )) ( ) At Bty t H x t R x t R e x e R x= = = =  

is the solution of x Bx′ = ; i.e. H  maps trajectories of x Ax′ =  onto trajectories of 

x Bx′ =  and it preserves the parameterization by t  since  

At BtH e e H= . 

Therefore, H  is a homemorphism from A  onto B . x Ax′ =  and x Bx′ =  are 

topologically conjugate. 
 

Remark 11.3 The mapping ( )H x R x=  is in fact a rotation through 045  and it is 

clearly a homemorphism. See Fig. 11.1 as follows.  
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Fig. 11.1 

 
3) Statement of Hartman-Grobman Theorem 
 
Theorem 11.1 If 0x =  is a hyperbolic equilibrium of (11.1) and (11.2), then there 
exists a homemorphism H  of an open set U  containing the origin onto an open set 

V  containing the origin such that for each 0x U∈ , there exists an open interval 

0I R⊂  containing the origin such that for all 0t I∈   

0 0( ) ( )At
tH x e H xϕ = .  

 
Remark 11.4 The proof of Theorem 11.1 is not presented. One may consults the book 
of “Differential Equations and Dynamical Systems” 3rd ed. by Lawrence Perko at pp. 
121-124.  
 
4) An Example Showing Hartman-Grobman Theorem  
 
Example 11.2 Consider 

            y y′ = − ; 2z z y′ = + .                    (11.3) 

The solution with 0(0)y y=  and 0(0)z z=  is solved by  

                   0( ) ty t y e −= ; 
2
0 2

0( ) ( )
3

t t ty
z t z e e e −= + − .  

The linearized system is given by  

y y′ = − , z z′ = .                        (11.4) 

Its solution with 0(0)y y=  and 0(0)z z=  is easily solved by 0( ) ty t y e −= , 
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0( ) tz t z e= . The homemorphism H  is defined as 2( , )

3

y
H y x yz

 
 =  + 
 

. Then, we 

verify the result of the Hartman-Grobman Theorem as follows. Let the solution of the 
original system as  

0
2

0 0 0 2
0

( , )
( )

3

t

t t t t

y e
y z y

z e e e
ϕ

−

−

 
 =  + − 
 

 

and Ate  of the linearized system is given by 
0

0

t
At

t

e
e

e

− 
=  
 

. Since  

0 0
2 2

0 0 0 0
0 0

0
( , )

0 ( )
3 3

t
t

At
t t

y e y
e

e H y z y ye z e z

−
−   

    = =    + +       

; 

and  

0
2
0 2

0

0
2 2

0 0 0 2
0

( )
3

( , )
( ) 33

t

t t t

t

t y y et t t
y

z z e e e

y e y
H y z H y yzz e e e

ϕ −

−

−

=−

= + −

   
   = =   ++ −      

   

0 0
2 2 2
0 0 02

0 0

( )
( ) ( )

3 3 3

t t

t
t t t t

y e e y
y y e y

z e e e e z

− −

−
−

   
   = =   + − + +   
   

, 

we have  

0 0 0 0( , ) ( , )At
tH y z e H y zϕ =  for all 0t ≥ .  

The nonlinear system (11.3) and the linearized system (11.4) of this example are 
shown in Fig. 11.2 as follows,  

 
                               Fig. 11.2 
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where “
2

2(0) {( , ) | }
3

s yW y z R z= ∈ = −  maps onto 2{( , ) | 0}sE y z R z= ∈ =  and 

2(0) {( , ) | 0}uW y z R y= ∈ =  maps onto 2{( , ) | 0}uE y z R y= ∈ =  by H .  

Trajectories, such as 
21

3
yz

y
= −  of (11.3) maps onto trajectories, such as 

1z
y

=  of (11.4), by H  and H  preserves the parameterization of t .” (The details 

of computation “” are left for homework)  
 

Remark 11.5 How to find a homemorphism H  such that 0 0( ) ( )At
tH x e H xϕ =  is 

difficult. In fact, the Hartman-Grobman Theorem only assures the existence of H . It 
doesn’t tell us any information on how to find H . It is a qualitative property!  
 

Remark 11.6 If f  is of rC , 1r ≥ , then it can be proved that there exists a 1C - 

homemorphism H  such that 0 0( ) ( )At
tH x e H xϕ =  by Hartman in 1960. It should 

be noted that assuming higher derivatives of f  doesn’t imply the existence of 

higher derivatives of H . In general even if f  is analytic, there does not exist a 

mapping H  of class 2C  satisfying 0 0( ) ( )At
tH x e H xϕ = . If the eigenvalues of 

(0)D f  satisfy some extra conditions, it may increase the smoothness of H . The 

discussion on this matter may consults the book of “Differential Equations and 
Dynamical Systems” by L. Perko, 3rd, Springer, pp. 127, 2001,.  
 
3. Center Manifold Theorems   
 

The stable manifold theorem gives a complete description of the dynamics of 
(11.1) in a neighborhood of a hyperbolic equilibrium. The center manifold theorem 
does provide such a description if we determine the behavior of solutions on the 

center manifold cW . 

 
1)  The Linearized System with Zero Real Part 
 
   Consider (11.1) and (11.2). If A  in (11.2) has k  eigenvalues with zero real 
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parts, j  eigenvalues with positive real parts and n k j− −  eigenvalues with 

negative real parts, then n c u sR E E E= ⊕ ⊕  with dim cE k= , dim uE j=  and 

dim sE n k j= − − . This situation can also be extended to (11.1) near 0x = .  

First we consider the case where uE  is trivial, i.e. A  has no eigenvalues with 

positive real parts. In this case, n c sR E E= ⊕  with dim cE k=  and dim sE n k= − .  

 
2) Center Manifold Theorem 
 
Theorem 11.2 Suppose that A  in (11.2) has k  eigenvalues with zero real parts and 
n k−  eigenvalues with negative real parts. Then, there exist 

1. an k -dimensional center manifold (0)cW  of class 1C  for (11.1) with 

dim (0) dimc cW E= , tangent to the center subspace cE  at 0x = , which is 

invariant under the flow tϕ  of (11.1); 

2. an n k− -dimensional stable manifold (0)sW  of class 1C  for (11.1) with 

dim (0) dims sW E= , tangent to the stable subspace sE  at 0x = , which is 

invariant under the flow tϕ  of (11.1) and tϕ  that starts on (0)sW  is 

exponentially decay as t →+∞ . 
 
3)  An illustrative Example with Many Local Center Manifolds 
 

Consider the following typical system for showing many center manifolds. 

( )x f x′ = , 

where 
2
1

2

( )
x

f x
x

 
=   − 

. The origin is only equilibrium. The linearized system is given 

by 

  (0)x D f x′ = , 

where 
0 0

(0)
0 1

A D f  
= =  − 

. Obviously, the stable subspace sE  is 2x -axis and the 

center subspace cE  is 1x -axis. The solution with 1 2(0) ( , )Tx c c c= =  is easily 
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solved by  

1
1

1

( )
1

c
x t

c t
=

−
; 2 2( ) tx t c e −= . 

Eliminating t  yields 1 1

1 1

2 2
c xx c e e

−

= . Then, for any 1 0c < , 2c , the function  

1 1

1 1

2 12 1 1 2

1

, 0( , , )
0, 0

c xc e e xx x c c
x

ψ
−

 <= = 
 =

              (11.5) 

gives the plane curves which are invariant under the flow tϕ , satisfying 

1 2(0, , ) 0c cψ = ; 1 2
1

(0, , ) 0c c
x
ψ∂

=
∂

. 

Notice that 1 10 0c x< ⇔ <  by 1
1

1

( )
1

c
x t

c t
=

−
 for all 0t ≥ . Therefore, when 

1 0x <  is sufficiently small, (11.5) is a local center manifold, which is tangent to cE  

at the origin. There are infinite many center manifolds because of any 1 0c <  and 

2c . However, these manifolds keep the same orientation. See Fig. 11.3 as follows. 

 
Fig. 11.3 

 
4)  Center Manifold and Reduced System  
 

For simplicity, we assume that f  in (11.1) is of 2C . Then, (11.1) can be 

written as  

( )x A x g x′ = + ,                      (11.6) 
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where (0) 0g =  and (0) 0g
x

∂
=

∂
.  

Then, there exists an invertible matrix C  s.t.  

11

2

A O
C AC

O A
−  
=  
 

. 

where an k k×  matrix 1A  has eigenvalues with zero real parts and an 

( ) ( )n k n k− × −  matrix 2A  has eigenvalues with negative real parts. The change of 

variable  

y
C x

z
 

= 
 

, ky R∈ ; n kz R −∈  

transform (11.6) into the form  

1 1( , )y A y g y z′ = + ;                      (11.7a) 

2 2 ( , )z A y g y z′ = + ,                      (11.7b) 

where 1g  and 2g  inherit properties of g . They satisfy 

(0, 0) 0jg = ; (0, 0) 0jg
y

∂
=

∂
; (0, 0) 0jg

z
∂

=
∂

 for 1, 2j = . 

Definition 11.3 If ( )z h y=  is an invariant manifold for (11.7) and h  is of 1C , 

then it is said a center manifold if  

(0) 0h =  and (0) 0h
y

∂
=

∂
.  

Then, by the definition 11.3, The local center manifold, tangent to cE  at 0x = , is 

given by  

(0) {( , ) | ( ), || || }c k n kW y z R R z h y y δ−= ∈ × = ≤ .  

 

Theorem 11.3 For (11.7), there exist 0δ >  and ( )h y  of 1C , defined for all 

|| ||y δ<  such that ( )z h y=  is a center manifold for (11.7). 

The flow on the center manifold with (0) ( (0))z h y=  satisfies the following 

equation 
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1 1( , ( ))y A y g y h y′ = + ,                    (11.8) 

which we refer to as the reduced system. However, if ( )h y  is unknown, (11.8) is 

also unknown.  
 

On the other hand, the change of variables  

( )
y y
w z h y
   

=   −   
 

Transforms (11.6) into  

1 1( , ( ))y A y g y w h y′ = + + ;                   (11.9a) 

2 2 1 1[ ( )] [ , ( )] ( )[ ( , ( ))]hw A w h y g y w h y y A y g y w h y
y

∂′ = + + + − + +
∂

.  (11.9b) 

In the new coordinates, the center manifold is 0w = . The flow on the center 
manifold is characterized by  

   ( ) 0w t ≡  ⇒  ( ) 0w t′ ≡  for all 0t ≥ .  

Substituting ( ) 0w t ≡  and ( ) 0w t′ ≡  into (11.9b) results in  

2 2 1 10 ( ) ( , ( )) ( )[ ( , ( ))]hA h y g y h y y A y g y h y
y

∂
= + − +

∂
,       (11.10) 

which is a center manifold equation for ( )h y  must satisfy, with boundary 

conditions 

(0) 0h = ; (0) 0h
x

∂
=

∂
.                     (11.11) 

Denote 

1 1 2 2( ( )) ( )[ ( , ( ))] ( ) ( , ( ))hN h y y A y g y h y A h y g y h y
y

∂
= + − −
∂

,  

and (11.10) becomes ( ( )) 0N h y = .  

Remark 11.7 (11.10) for ( )h y  can’t be solved in most cases (to do so would imply 

that (11.7) can be solved), but its solution can be approximated arbitrarily closely as a 

Taylor series in y . 
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Theorem 11.4 If ( )yϕ  is of 1C  with (0) 0ϕ =  and (0) 0
y
ϕ∂

=
∂

 can be found such 

that ( ( )) (|| || )pN y O yϕ =  for some 1p > , then for || || 1y << ,  

( ) ( ) (|| || )ph y y O yϕ− =  

and the reduced system (11.7) can be represented as  
1

1 1( , ( )) (|| || )py A y g y y O yϕ +′ = + + . 

 

Remark 11.8 The order of magnitude notation ( )O ⋅ , it is enough to think of 

( ) (|| || )py O yρ =  as || ( ) || || || py k yρ ≤  for || || 1y << .  

 
5) Stability of Center Manifold 
 

When uE  is nontrivial, it is definitely unstable by Lyapunov stability. When 
uE  is trivial, the stability of the full system (11.7) or (11.6) is determined by the  

reduced system (11.8).  
 

Theorem 11.5 If 0y =  of the reduced system (11.8) is asymptotically stable 

(respectively unstable), then 0x =  of the full system (11.7), or (11.6) is also 
asymptotically stable (respectively unstable).   
 

Corollary 11.6 Under the conditions of Theorem 11.5, if 0y =  of the reduced 

system (11.8) is stable and there is a Lyapunov function ( )V y  of 1C  such that  

1 1[ ( , ( ))] 0V A y g y h y
y

∂
+ ≤

∂
, 

near 0y = , then, 0x =  of the full system (11.7), or (11.6) is also stable.   

 
6) Examples  
 
Example 11.3 Consider  

1 2
2

2 2 1 1 2

x x
x x a x b x x
′ =

 ′ = − + +
,                 (11.12) 

where 0a ≠ .  
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The system has a unique equilibrium 0x = . The linearization at 0x =  results 
in  

0 1
(0)

0 1
A D f  
= =  − 

 and 2
1 1 2

0
( )g x

a x b x x
 

=  + 
, 

where A  has eigenvalues at 0  and 1− , and ( )g x  satisfies (0) 0g =  and 

(0) 0g
x

∂
=

∂
. Let M  be a matrix whose columns are the eigenvectors of A ; that is,  

1 1
0 1

M  
=  − 

, 

and take 1C M −= . Then, 

1 0 0
0 1

C AC −  
=  − 

. 

The change of variables  

1 1 2

2 2

x x xy
C

x xz
+    

= =     −     
 

puts the system (11.12) into the form  
2 2( ) ( )y a y z b yz z′ = + − + ; 

2 2( ) ( )z z a y z b yz z′ = − − + + + . 

The center manifold equation (11.10) with the boundary condition (11.11) becomes  
2 2( ( )) ( )[ ( ( )) ( ( ) ( ))]N h y h y a y h y b yh y h y′= + − +  

2 2( ) ( ( )) ( ( ) ( )) 0h y a y h y b yh y h y+ + + − + = ; 

(0) (0) 0h h′= = . 

We set 2 3
2 3( )h y h y h y= + +  and substitute it in the center manifold equation to 

find unknown coefficients 2 3, ,h h   by matching coefficients of like powers in y . 

We don’t know in advance how many terms of series we need. Let us start with the 

simplest approximation ( ) 0h y ≈ . The reduced system is  

2 3(| | )y a y O y′ = + .  

The term 2a y  is the dominant term when | | 1y << . Since 0a ≠ , the reduced 
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system is unstable. By Theorem 11.5, the full system is unstable.  
 

Remark 11.9 Notice that an 2(| | )O y  error in ( )h y  results in an 3(| | )O y  error in 

the right-hand side of the reduced system. This is a consequence of the fact that 

1( , )g y z , which appears on the right-hand side of the reduced system as 1( , ( ))g y h y , 

has a partial derivative with respect to z  that vanishes at the origin. Clearly, this 
observation is also valid for higher order approximations.  
 
Example 11.4 Consider the system  

           y y z′ = ; 2z z a y′ = − + . 

The center manifold equation (11.10) with the boundary condition (11.11) is  
2( ( )) ( )[ ( )] ( ) 0N h y h y y h y h y a y′= + − = ; (0) (0) 0h h′= = . 

We start by trying ( ) 0yϕ = . The reduced system is 3(| | )y O y′ = , for which, we 

can’t reach any conclusion about the stability of the origin. 

 Then, we try 2 4
2( ) (| | )h y h y O y= +  and substitute it into the center manifold 

equation and calculate 2h , by matching coefficients of 2y , to obtain 2h a= . The 

reduced system is  
3 4(| | )y a y O y′ = + .  

Therefore, the origin is asymptotically stable if 0a <  and unstable if 0a > . 
Consequently, by Theorem 11.5, the full system is asymptotically stable if 0a <  and 
unstable if 0a > . If 0a = , the center manifold equation (11.10) with the boundary 
condition (11.11) reduces to  

( ( )) ( )[ ( )] ( ) 0N h y h y y h y h y′= + = , (0) (0) 0h h′= = , 

which has the exact solution ( ) 0h y = . The reduced system 0y′ =  is stable with 

2( )V y y=  as a Lyapunov function. Therefore, by Corollary 11.6, the origin of the 

full system is stable if 0a = .  
 
7) General Center Manifold Theorem 
 
Theorem 11.7 (Center Manifold Theorem) Suppose that A  in (11.2) has k  

eigenvalues with negative real part, j  eigenvalues with positive real part and 

n k j− −  eigenvalues with zero real part. Then, there exist 
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1. an m n k j= − − -dimensional center manifold (0)cW  of class 1C  for (11.1) 

with dim (0) dimc cW E= , tangent to the center subspace cE  at 0x = , which is 

invariant under the flow tϕ  of (11.1); 

2. an k -dimensional stable manifold (0)sW  of class 1C  for (11.1) with 

dim (0) dims sW E= , tangent to the stable subspace sE  at 0x = , which is 

invariant under the flow tϕ  of (11.1) and tϕ  that starts on (0)sW  is 

exponentially decay as t →+∞ ; 

3. an j -dimensional unstable manifold (0)uW  of class 1C  for (11.1) with 

dim (0) dimu uW E= , tangent to the unstable subspace uE  at 0x = , which is 

invariant under the flow tϕ  of (11.1) and tϕ  that starts on (0)uW  is 

exponentially decay as t →−∞ .  
 
Remark 11.10 Theorem 11.2 is a general form of the center manifold theorem. It is 
local. The proof of the center manifold theorem is a bit harder and tedious. We will 
not give the proof. It may consult the textbook of “Elements of Differentiable 
Dynamics and Bifurcation Theory” Academic Press, New York, 1989 at p.32, by D. 
Ruelle. 
 
Remark 11.11 The treatment of the case where uE  is trivial can be generalized to 
the case where uE  is nontrivial. It is omitted.  
 
4. Summary  
 
•  Although the stable manifold theorem and the linearization characterize that 

( )x f x′ =  and (0)x D f x′ =  have the same stability property near a hyperbolic 

equilibrium, the stable manifold theorem gives much more information on 
geometric structures.  

 
•  The stable manifold theorem uses a geometric way to characterize the local 

property near a hyperbolic equilibrium. The linearization uses an analytical way 
to characterize the local property near a hyperbolic equilibrium.  

 
•  The center manifold approach treats the case where equilibrium is not hyperbolic, 

but it is much complicated.  
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Homework  
 
11.1 Consider the system given by  

3
1 1x x′ = − , 2 2x x′ = − . 

1) Find sE  and cE ; 

2) Show that for any any 1c  and 2c , the function 

2
1

2
1

1
2

1 1

2 1 1 2 1
1
2

2 1

, 0
( , , ) 0, 0

0

x

x

c e x
x x c c x

c e x

ψ

−

−


− <
= = =

 >

 

gives one dimensional invariant manifold, which satisfy  

               1 2(0, , ) 0c cψ = ; 1 2

1

(0, , )
0

c c
x

ψ∂
=

∂
. 

3) For 1| | 1x << , this invariant manifold is local center manifold. Show that 

there are infinite many local center manifolds at the origin.  
 
11.2 Study the stability of the following system 

2 2y y z y′ = − ; 2z z y′ = − +  

    by the center manifold approach.  
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Remark 11.7 Theorem 11.2 is a general form of the center manifold theorem. It is 
local. The proof of the center manifold theorem is a bit harder and tedious. We will 
not give the proof. It may consult the textbook of “Elements of Differentiable 
Dynamics and Bifurcation Theory” Academic Press, New York, 1989 at p.32, by D. 
Ruelle. 
      
  


